Mutation Invariance of the Szabó Spectral Sequence

Aayush Karan Mentor: Dr. Jianfeng Lin

May 19, 2018

MIT PRIMES Conference

Aayush Karan Mentor: Dr. Jianfeng Lin

Szabó Spectral Sequence

MIT PRIMES Conference 1 / 15

• A *knot* can be conceptualized as a piece of string looped in and out of itself with the ends fused together. Multiple disjoint knots form *links*.

A B F A B F

Image: Image:

- A *knot* can be conceptualized as a piece of string looped in and out of itself with the ends fused together. Multiple disjoint knots form *links*.
- The projection of a link onto the plane is its *link diagram* D, and the image of two overlapping strands is a *crossing*.

Image: Image:

- A *knot* can be conceptualized as a piece of string looped in and out of itself with the ends fused together. Multiple disjoint knots form *links*.
- The projection of a link onto the plane is its *link diagram* D, and the image of two overlapping strands is a *crossing*.
- The purpose of link transformations is to see what stays the same after altering the link. *Link invariants* are "canonical equivalences."

Resolution Diagrams

Given a link diagram D, we can enumerate the crossings $c_1, c_2, ..., c_n$, and *smooth* them:

Resolution Diagrams

Given a link diagram D, we can enumerate the crossings $c_1, c_2, ..., c_n$, and *smooth* them:

- There are two types of *resolutions*: 0-resolutions and 1-resolutions
- We get a binary string α associated with $\mathcal{I}_{\alpha},$ a complete smoothing of $\mathcal{D}.$

Let the *weight* of \mathcal{I}_{α} , denoted $|\mathcal{I}_{\alpha}|$, be the number of 1's in α .

Let the *weight* of \mathcal{I}_{α} , denoted $|\mathcal{I}_{\alpha}|$, be the number of 1's in α .

• A helpful way to visualize all the resolution diagrams is to create a *resolution cube*, where we arrange the \mathcal{I}_{α} column-wise grouped by weight.

イロト イポト イヨト イヨト 二日

Let the *weight* of \mathcal{I}_{α} , denoted $|\mathcal{I}_{\alpha}|$, be the number of 1's in α .

- A helpful way to visualize all the resolution diagrams is to create a *resolution cube*, where we arrange the \mathcal{I}_{α} column-wise grouped by weight.
- Example:

Another Example:

Aayush Karan Mentor: Dr. Jianfeng Lin

MIT PRIMES Conference 5 / 15

Note that there are edges in the resolution cube.

• These are known as 1-dimensional faces, with diagrams \mathcal{I}_{α} and $\mathcal{I}_{\alpha'}$ adjacent iff α and α' differ at precisely one position.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Note that there are edges in the resolution cube.

- These are known as 1-dimensional faces, with diagrams \mathcal{I}_{α} and $\mathcal{I}_{\alpha'}$ adjacent iff α and α' differ at precisely one position.
- We can also consider k-dimensional faces, such that α and α' differ at precisely k positions.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Special Bargain Homological Algebra

 "Algebra is the offer made by the devil to the mathematician. The devil says: 'I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine" — Sir Michael Francis Atiyah

A Special Bargain

Homological Algebra

Definition (Chain Complex)

A chain complex (M_*, d) with differential d is a sequence of homomorphisms between vector spaces

$$.. \xrightarrow{d_{n-2}} M^{n-1} \xrightarrow{d_{n-1}} M^n \xrightarrow{d_n} M^{n+1} \xrightarrow{d_{n+1}} ..$$

such that $d_{n+1} \circ d_n = 0$ for each n.

A B M A B M

Image: Image:

A Special Bargain

Homological Algebra

Definition (Chain Complex)

A chain complex (M_*, d) with differential d is a sequence of homomorphisms between vector spaces

$$.. \xrightarrow{d_{n-2}} M^{n-1} \xrightarrow{d_{n-1}} M^n \xrightarrow{d_n} M^{n+1} \xrightarrow{d_{n+1}} ..$$

such that $d_{n+1} \circ d_n = 0$ for each n.

Definition (Homology)

The *homology* of a chain complex (M_*, d) is the chain complex $(H_*, 0)$, where

$$H^n = Ker(d_n)/Im(d_{n-1}).$$

Aayush Karan Mentor: Dr. Jianfeng Lin

8 / 15

< □ > < ---->

The Khovanov Chain Complex

We can finally construct the Khovanov Chain Complex:

Assign to each *I_α* of the resolution cube a vector space *V*(*I_α*) of dimension 2^{k_α} over F₂, where k_α is the number of circles.

イロト 人間ト イヨト イヨト

We can finally construct the Khovanov Chain Complex:

- Assign to each *I_α* of the resolution cube a vector space *V*(*I_α*) of dimension 2^{k_α} over 𝔽₂, where k_α is the number of circles.
- We get the sequence

$$\mathcal{C}(\mathcal{D})^i = \bigoplus_{|\mathcal{I}_{\alpha}|} V(\mathcal{I}_{\alpha})$$

with suitable homological degree i.

We can finally construct the Khovanov Chain Complex:

- Assign to each *I_α* of the resolution cube a vector space *V*(*I_α*) of dimension 2^{k_α} over 𝔽₂, where k_α is the number of circles.
- We get the sequence

$$\mathcal{C}(\mathcal{D})^i = \bigoplus_{|\mathcal{I}_{\alpha}|} V(\mathcal{I}_{\alpha})$$

with suitable homological degree i.

• For each 1-dimensional face, Khovanov defines a linear map.

We can finally construct the Khovanov Chain Complex:

- Assign to each *I_α* of the resolution cube a vector space *V*(*I_α*) of dimension 2^{k_α} over 𝔽₂, where k_α is the number of circles.
- We get the sequence

$$\mathcal{C}(\mathcal{D})^i = \bigoplus_{|\mathcal{I}_{lpha}|} V(\mathcal{I}_{lpha})$$

with suitable homological degree i.

- For each 1-dimensional face, Khovanov defines a linear map.
- Direct summing them down columns of the cube give the homomorphisms

$$d_1^i: \mathcal{C}(\mathcal{D})^i \longrightarrow \mathcal{C}(\mathcal{D})^{i+1}$$

9 / 15

イロト イポト イヨト イヨト

The Khovanov Chain Complex

Lemma (Khovanov)

 $d_1^2 = 0$: This means we can take the homology of the chain complex $(C(D)_*, d_1)$, called the Khovanov Homology of link diagram D, or Kh(D).

10 / 15

The Khovanov Chain Complex

Lemma (Khovanov)

 $d_1^2 = 0$: This means we can take the homology of the chain complex $(C(D)_*, d_1)$, called the Khovanov Homology of link diagram D, or Kh(D).

Theorem (Khovanov, Bloom)

Not only is Kh(D) a link invariant, but it is also invariant under Conway Mutation.

We have a functioning chain complex under 1-dimensional face maps, but what if we consider k dimensions?

We have a functioning chain complex under 1-dimensional face maps, but what if we consider k dimensions?

• Zoltan Szabó defines the respective maps $d_2, d_3, ..., d_n$.

We have a functioning chain complex under 1-dimensional face maps, but what if we consider k dimensions?

- Zoltan Szabó defines the respective maps $d_2, d_3, ..., d_n$.
- d_2 induces a map d_2^* on the homology $Kh(\mathcal{D})$, and $d_2^{*2} = 0$.

This means we can take the homology again, giving us $E^2(\mathcal{D})$, i.e. $H(Kh(\mathcal{D}), d_2^*))$.

This means we can take the homology again, giving us $E^2(\mathcal{D})$, i.e. $H(Kh(\mathcal{D}), d_2^*))$.

Inductively we can show that d_k is a differential on E^{k-1}(D) and define E^k(D) = H(E^{k-1}(D), d_k). This is called Szabó's Geometric Spectral Sequence.

イロト 不得 とくほ とくほう しゅ

This means we can take the homology again, giving us $E^2(\mathcal{D})$, i.e. $H(Kh(\mathcal{D}), d_2^*)).$

• Inductively we can show that d_k is a differential on $E^{k-1}(\mathcal{D})$ and define $E^{k}(\mathcal{D}) = H(E^{k-1}(\mathcal{D}), d_{k})$. This is called *Szabó's Geometric* Spectral Sequence.

Theorem (Szabó)

 $E^{k}(\mathcal{D})$ is a link invariant.

Aayush Karan Mentor: Dr. Jianfeng Lin

12 / 15

• We first tried to show that d_k was preserved under mutation, but this is false.

- We first tried to show that d_k was preserved under mutation, but this is false.
- We realized there was an alternative approach (adapt Lambert-Cole's proof for $Kh(\mathcal{D})$) more heavily reliant on homological algebra (exact triangles).

イロト イポト イヨト イヨト 二日

- We first tried to show that d_k was preserved under mutation, but this is false.
- We realized there was an alternative approach (adapt Lambert-Cole's proof for $Kh(\mathcal{D})$) more heavily reliant on homological algebra (exact triangles).

This requires proving certain properties of a *reduced version* of the complex.

• Goal: Prove the reduced version is independent of choice of base point.

- Goal: Prove the reduced version is independent of choice of base point.
- Use this to prove that $E^2(\mathcal{D})$ is invariant under Conway Mutation.

- Goal: Prove the reduced version is independent of choice of base point.
- Use this to prove that $E^2(\mathcal{D})$ is invariant under Conway Mutation.
- Generalize to $E^k(\mathcal{D})$.

I would very much like to thank the following:

- Dr. Jianfeng Lin, my mentor, for suggesting this project and working extensively with me
- PRIMES-USA, for providing this wonderful opportunity
- Dr. Tanya Khovanova and Dr. Slava Gerovitch
- The MIT Math Department
- My parents

イロト イポト イヨト イヨト 二日