Mutation Invariance of the Szabó Spectral Sequence

Aayush Karan
Mentor: Dr. Jianfeng Lin
May 19, 2018
MIT PRIMES Conference

Preliminary Knot Theory

- A knot can be conceptualized as a piece of string looped in and out of itself with the ends fused together. Multiple disjoint knots form links.

Preliminary Knot Theory

- A knot can be conceptualized as a piece of string looped in and out of itself with the ends fused together. Multiple disjoint knots form links.
- The projection of a link onto the plane is its link diagram \mathcal{D}, and the image of two overlapping strands is a crossing.

Preliminary Knot Theory

- A knot can be conceptualized as a piece of string looped in and out of itself with the ends fused together. Multiple disjoint knots form links.
- The projection of a link onto the plane is its link diagram \mathcal{D}, and the image of two overlapping strands is a crossing.
- The purpose of link transformations is to see what stays the same after altering the link. Link invariants are "canonical equivalences."

Resolution Diagrams

Given a link diagram \mathcal{D}, we can enumerate the crossings $c_{1}, c_{2}, \ldots, c_{n}$, and smooth them:

Resolution Diagrams

Given a link diagram \mathcal{D}, we can enumerate the crossings $c_{1}, c_{2}, \ldots, c_{n}$, and smooth them:

- There are two types of resolutions: 0-resolutions and 1-resolutions
- We get a binary string α associated with \mathcal{I}_{α}, a complete smoothing of D.

Resolution Cube

Let the weight of \mathcal{I}_{α}, denoted $\left|\mathcal{I}_{\alpha}\right|$, be the number of 1 's in α.

Resolution Cube

Let the weight of \mathcal{I}_{α}, denoted $\left|\mathcal{I}_{\alpha}\right|$, be the number of 1 's in α.

- A helpful way to visualize all the resolution diagrams is to create a resolution cube, where we arrange the \mathcal{I}_{α} column-wise grouped by weight.

Resolution Cube

Let the weight of \mathcal{I}_{α}, denoted $\left|\mathcal{I}_{\alpha}\right|$, be the number of 1 's in α.

- A helpful way to visualize all the resolution diagrams is to create a resolution cube, where we arrange the \mathcal{I}_{α} column-wise grouped by weight.
- Example:

Resolution Cube

Another Example:

Resolution Cube

Note that there are edges in the resolution cube.

- These are known as 1-dimensional faces, with diagrams \mathcal{I}_{α} and $\mathcal{I}_{\alpha^{\prime}}$ adjacent iff α and α^{\prime} differ at precisely one position.

Resolution Cube

Note that there are edges in the resolution cube.

- These are known as 1-dimensional faces, with diagrams \mathcal{I}_{α} and $\mathcal{I}_{\alpha^{\prime}}$ adjacent iff α and α^{\prime} differ at precisely one position.
- We can also consider k-dimensional faces, such that α and α^{\prime} differ at precisely k positions.

A Special Bargain

Homological Algebra

- "Algebra is the offer made by the devil to the mathematician. The devil says: 'I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvelous machine" - Sir Michael Francis Atiyah

A Special Bargain

Homological Algebra

Definition (Chain Complex)

A chain complex $\left(M_{*}, d\right)$ with differential d is a sequence of homomorphisms between vector spaces

$$
\ldots \xrightarrow{d_{n-2}} M^{n-1} \xrightarrow{d_{n-1}} M^{n} \xrightarrow{d_{n}} M^{n+1} \xrightarrow{d_{n+1}} \ldots
$$

such that $d_{n+1} \circ d_{n}=0$ for each n.

A Special Bargain

Homological Algebra

Definition (Chain Complex)

A chain complex $\left(M_{*}, d\right)$ with differential d is a sequence of homomorphisms between vector spaces

$$
\ldots \xrightarrow{d_{n-2}} M^{n-1} \xrightarrow{d_{n-1}} M^{n} \xrightarrow{d_{n}} M^{n+1} \xrightarrow{d_{n+1}} \ldots
$$

such that $d_{n+1} \circ d_{n}=0$ for each n.

Definition (Homology)

The homology of a chain complex $\left(M_{*}, d\right)$ is the chain complex $\left(H_{*}, 0\right)$, where

$$
H^{n}=\operatorname{Ker}\left(d_{n}\right) / \operatorname{Im}\left(d_{n-1}\right)
$$

The Khovanov Chain Complex

We can finally construct the Khovanov Chain Complex:

- Assign to each \mathcal{I}_{α} of the resolution cube a vector space $V\left(\mathcal{I}_{\alpha}\right)$ of dimension $2^{k_{\alpha}}$ over \mathbb{F}_{2}, where k_{α} is the number of circles.

The Khovanov Chain Complex

We can finally construct the Khovanov Chain Complex:

- Assign to each \mathcal{I}_{α} of the resolution cube a vector space $V\left(\mathcal{I}_{\alpha}\right)$ of dimension $2^{k_{\alpha}}$ over \mathbb{F}_{2}, where k_{α} is the number of circles.
- We get the sequence

$$
\mathcal{C}(\mathcal{D})^{i}=\bigoplus_{\left|\mathcal{I}_{\alpha}\right|} V\left(\mathcal{I}_{\alpha}\right)
$$

with suitable homological degree i.

The Khovanov Chain Complex

We can finally construct the Khovanov Chain Complex:

- Assign to each \mathcal{I}_{α} of the resolution cube a vector space $V\left(\mathcal{I}_{\alpha}\right)$ of dimension $2^{k_{\alpha}}$ over \mathbb{F}_{2}, where k_{α} is the number of circles.
- We get the sequence

$$
\mathcal{C}(\mathcal{D})^{i}=\bigoplus_{\left|\mathcal{I}_{\alpha}\right|} V\left(\mathcal{I}_{\alpha}\right)
$$

with suitable homological degree i.

- For each 1-dimensional face, Khovanov defines a linear map.

The Khovanov Chain Complex

We can finally construct the Khovanov Chain Complex:

- Assign to each \mathcal{I}_{α} of the resolution cube a vector space $V\left(\mathcal{I}_{\alpha}\right)$ of dimension $2^{k_{\alpha}}$ over \mathbb{F}_{2}, where k_{α} is the number of circles.
- We get the sequence

$$
\mathcal{C}(\mathcal{D})^{i}=\bigoplus_{\left|\mathcal{I}_{\alpha}\right|} V\left(\mathcal{I}_{\alpha}\right)
$$

with suitable homological degree i.

- For each 1-dimensional face, Khovanov defines a linear map.
- Direct summing them down columns of the cube give the homomorphisms

$$
d_{1}^{i}: \mathcal{C}(\mathcal{D})^{i} \longrightarrow \mathcal{C}(\mathcal{D})^{i+1}
$$

The Khovanov Chain Complex

> Lemma (Khovanov)
> $d_{1}^{2}=0$: This means we can take the homology of the chain complex $\left(\mathcal{C}(\mathcal{D})_{*}, d_{1}\right)$, called the Khovanov Homology of link diagram \mathcal{D}, or $\operatorname{Kh}(\mathcal{D})$.

The Khovanov Chain Complex

Lemma (Khovanov)

$d_{1}^{2}=0$: This means we can take the homology of the chain complex $\left(\mathcal{C}(\mathcal{D})_{*}, d_{1}\right)$, called the Khovanov Homology of link diagram \mathcal{D}, or $\operatorname{Kh}(\mathcal{D})$.

Theorem (Khovanov, Bloom)

Not only is $K h(\mathcal{D})$ a link invariant, but it is also invariant under Conway Mutation.

A Natural Extension

We have a functioning chain complex under 1-dimensional face maps, but what if we consider k dimensions?

A Natural Extension

We have a functioning chain complex under 1-dimensional face maps, but what if we consider k dimensions?

- Zoltan Szabó defines the respective maps $d_{2}, d_{3}, \ldots, d_{n}$.

A Natural Extension

We have a functioning chain complex under 1-dimensional face maps, but what if we consider k dimensions?

- Zoltan Szabó defines the respective maps $d_{2}, d_{3}, \ldots, d_{n}$.
- d_{2} induces a map d_{2}^{*} on the homology $K h(\mathcal{D})$, and $d_{2}^{* 2}=0$.

The E^{k} Spectral Page

This means we can take the homology again, giving us $E^{2}(\mathcal{D})$, i.e. $\left.H\left(K h(\mathcal{D}), d_{2}^{*}\right)\right)$.

The E^{k} Spectral Page

This means we can take the homology again, giving us $E^{2}(\mathcal{D})$, i.e. $\left.H\left(K h(\mathcal{D}), d_{2}^{*}\right)\right)$.

- Inductively we can show that d_{k} is a differential on $E^{k-1}(\mathcal{D})$ and define $E^{k}(\mathcal{D})=H\left(E^{k-1}(\mathcal{D}), d_{k}\right)$. This is called Szabó's Geometric Spectral Sequence.

The E^{k} Spectral Page

This means we can take the homology again, giving us $E^{2}(\mathcal{D})$, i.e. $\left.H\left(K h(\mathcal{D}), d_{2}^{*}\right)\right)$.

- Inductively we can show that d_{k} is a differential on $E^{k-1}(\mathcal{D})$ and define $E^{k}(\mathcal{D})=H\left(E^{k-1}(\mathcal{D}), d_{k}\right)$. This is called Szabó's Geometric Spectral Sequence.

Theorem (Szabó)
$E^{k}(\mathcal{D})$ is a link invariant.

Initial Approaches

The overarching goal is to show that $E^{k}(\mathcal{D})$ is invariant under Conway Mutation.

Initial Approaches

The overarching goal is to show that $E^{k}(\mathcal{D})$ is invariant under Conway Mutation.

- We first tried to show that d_{k} was preserved under mutation, but this is false.

Initial Approaches

The overarching goal is to show that $E^{k}(\mathcal{D})$ is invariant under Conway Mutation.

- We first tried to show that d_{k} was preserved under mutation, but this is false.
- We realized there was an alternative approach (adapt Lambert-Cole's proof for $K h(\mathcal{D})$) more heavily reliant on homological algebra (exact triangles).

Initial Approaches

The overarching goal is to show that $E^{k}(\mathcal{D})$ is invariant under Conway Mutation.

- We first tried to show that d_{k} was preserved under mutation, but this is false.
- We realized there was an alternative approach (adapt Lambert-Cole's proof for $K h(\mathcal{D})$) more heavily reliant on homological algebra (exact triangles).

This requires proving certain properties of a reduced version of the complex.

Future Research

The reduced version of the Chain Complex comes from choosing a base point on a circle and altering the vector space construction of the original complex.

Future Research

The reduced version of the Chain Complex comes from choosing a base point on a circle and altering the vector space construction of the original complex.

- Goal: Prove the reduced version is independent of choice of base point.

Future Research

The reduced version of the Chain Complex comes from choosing a base point on a circle and altering the vector space construction of the original complex.

- Goal: Prove the reduced version is independent of choice of base point.
- Use this to prove that $E^{2}(\mathcal{D})$ is invariant under Conway Mutation.

Future Research

The reduced version of the Chain Complex comes from choosing a base point on a circle and altering the vector space construction of the original complex.

- Goal: Prove the reduced version is independent of choice of base point.
- Use this to prove that $E^{2}(\mathcal{D})$ is invariant under Conway Mutation.
- Generalize to $E^{k}(\mathcal{D})$.

Acknowledgements

I would very much like to thank the following:

- Dr. Jianfeng Lin, my mentor, for suggesting this project and working extensively with me
- PRIMES-USA, for providing this wonderful opportunity
- Dr. Tanya Khovanova and Dr. Slava Gerovitch
- The MIT Math Department
- My parents

